

Mercury Contaminated Sites -Chemical Industry Legacy in CEE Region

Jindrich Petrlik - IPEN Toxic Metals WG cochair

Executive director of Arnika - Toxics and Waste Programme

Mercury Contaminated Sites in CEE Region a toxics-free future

Research and monitoring studies in CEE

Case studies: Kazakhstan and Armenia

The European Union's Non-State Actors in Development - Actions in Kazakhstan programme

Prague, Karaganda – April 2015

Research and monitoring studies in CEE

ARNIKA toxické látky a odpady

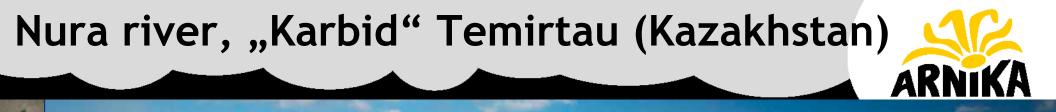
Chemical Plants as a Significant Source of Mercury Contamination in the CEE Region (2015)

http://english.arnika.org/kazakhstan/publications

Contaminated Sites and Their Management. Case studies: Kazakhstan and Armenia (2015)

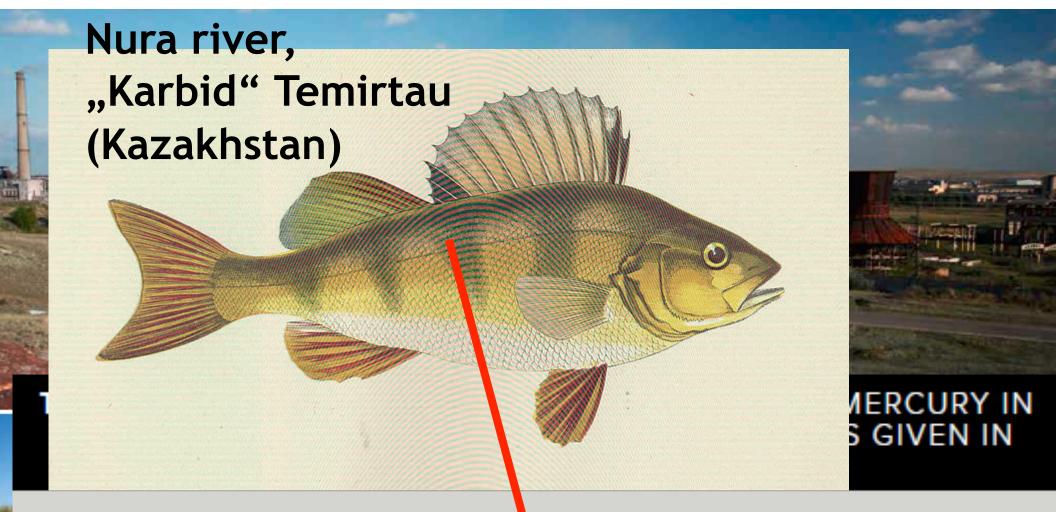
(Горячие точки загрязнения токсичными веществами. Центральный и восточный Казахстан)

http://english.arnika.org/kazakhstan/publications


Contaminated site: Vlora Mercury Hot Spot in Albania

IPEN Mercury Free Campaign Report (2013)

http://www.ipen.org/projects/mercury-fish-and-human-hair



N OF HUMAN HEALTH RISKS ASSOCIATED WITH MERCURY IN SELECTED SAMPLES - HAZARD QUOTIENTS (HQ).

Concentration in soil (mg kg ⁴)	Exposition pathway					
	Ingestion of soil	Dermal contact of soil	Ingestion of vegetable			
11.8	8.4E-02	1.7E-02	3.5E+00	3.6E+00		
10.1	7.2E-02	1.4E-02	3.0E+00	3.1E+00		
17.0	1.2E-01	2.4E-02	5.1E+00	5.2E+00		
178	1.3E+00	2.5E-01	5.3E+01	5.5E+01		
10.8	7.7E-02	1.5E-02	3.2E+00	3.3E+00		

🕒 a toxics-free future

Standard deviation (SD) of the measurement is 12 %.

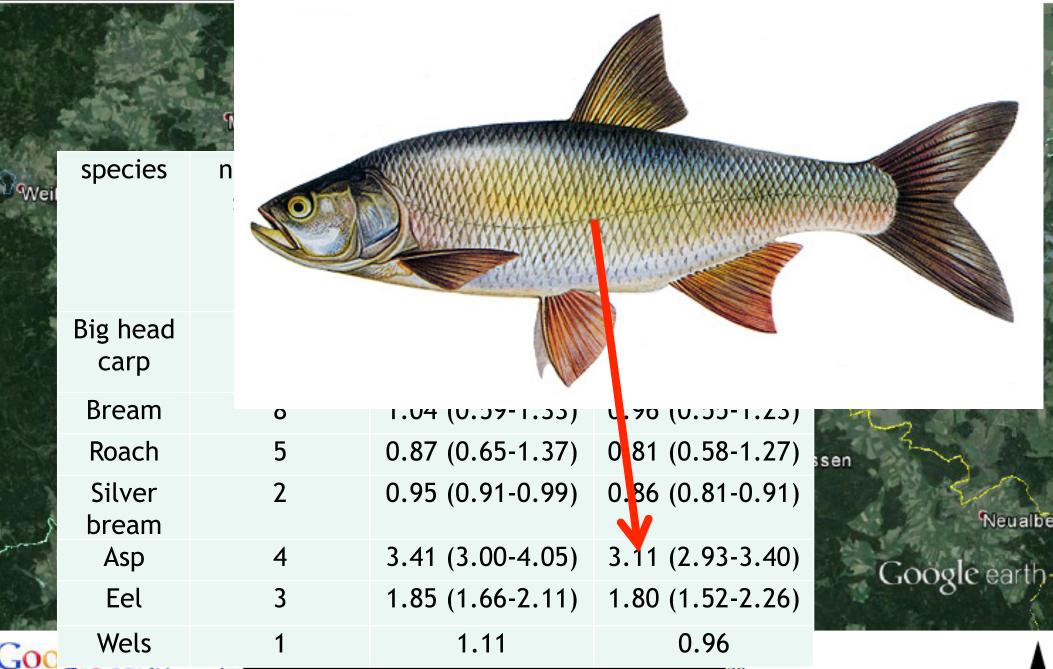
Sample Code	Mercury (mg kg·¹)	Methylmercury (mg kg-1)
NUR-F-14/1/1	0.442	0.343
NUR-F-14/1/2-3	1.38	1.36
NUR-F-14/2	0.634	0.543

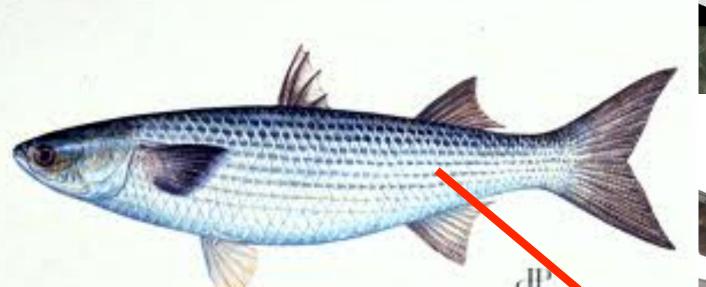
Martredwitz (Germany) and Skalka reservoir (Czech Rep.)

Established in 1788; 1907 – 1985 – herbicide production based on mercury coole earth

© 2016 Google © 2009 GeoBasis-DE/BKG

Mitterteich





Martredwitz (Germany) and Skalka reservoir (Czech Rep.)

Vlora (Albania)

The second second
PERMIT
The state of the s
IPEN
a toxics-free future

		Sample Size	Mean(pp m, ww)	St Dev	Min Hg (ppm)	Max Hg (ppm)
1	All fish					
I	samples	14	0.285	0.227	0.112	0.961
	Cod fish	11	0.195	0.076	0.112	2,343
	Mullet fish	3	0.617	0.309	0.365	0.961

40'28'37.83" N 19"26'57.22" E elev

Contaminated Sites in CEE Region

Remediation of Contaminated Sites is Crucial!

"Contaminated sediments at the bottom of surface waters can serve as an important mercury reservoir, with sediment bound mercury recycling back into the aquatic ecosystem for decades or longer." (UNEP 2002). Contaminated sites also contribute to re-mobilization and re-emissions of mercury, a significant source and pathway of mercury air emissions (Pirrone, Cinnirella et al. 2010); (

UNEP Chemicals Branch 2008).

Contaminated Sites in CEE Region

Combined pollution sources

Sources of mercury releases are combined at many sites - ongoing chlorine or VCM production as well as contaminated soil/sediments/site by mercury from historic production using mercury

Major fish contamination

by mercury can be several tenths km far downstream from the plant (e.g. Karbid facility 60 - 70 km far from Intumak dam (Kazakhstan); Marktredwitz, Germany 20 km from Skalka dam, Czech Republic)

Děkuji - Thank you Спасибо - Arigato

Jindrich Petrlik / Arnika jindrich.petrlik@arnika.org

